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Abstract

A system and method for algorithmic trading, here-
inafter referred to as the Tactical Trend Trader (3T),
is presented, designed to execute trades based on a
quantitative, adaptive framework. The system op-
erates as a persistent, stateful process that continu-
ously evaluates market conditions to inform trading
decisions. The core operational cyclical control-flow
graph comprises four distinct stages: data ingestion,
multi-parameter optimization, trade evaluation and
execution, and state reconciliation. A primary con-
tribution of this work is a massively parallel opti-
mization engine that tests sufficiently large combi-
nations of parameter permutations in real-time to
identify locally optimal configurations. This archi-
tecture is a direct response to the documented lim-
itations of conventional predictive models in non-
stationary markets, favoring continuous, exploratory
adaptation over retrospective prediction. For mar-
ket state classification, the system utilizes Permu-
tation Entropy to distinguish between predictable,
trending regimes and stochastic, non-trending noise.
A key innovation is its departure from the classi-
cal Kelly Criterion for position sizing; instead, it
employs a performance-based heuristic that dynam-
ically modulates a base position size according to
recent profitability. Furthermore, risk management
is abstracted from individual trades and managed

at the portfolio level via a scheduled reconciliation
process, obviating the need for conventional stop-
loss orders. This synergistic combination provides
a robust framework for systematic trading that ad-
dresses the fundamental challenge of adaptation lag
inherent in history-bound models.

1 Introduction

The domain of algorithmic trading is characterized
by a persistent challenge: developing systems that
can adapt to non-stationary and often chaotic finan-
cial markets [13]. Many conventional systems rely
on statically configured parameters, rendering them
brittle and susceptible to performance degradation
as market dynamics shift. Even sophisticated sys-
tems that employ periodic model retraining can fail
when confronted with sudden regime shifts, struc-
tural breaks, or rare black-swan events.

The Tactical Trend Trader (3T) is a computer-
implemented system engineered to address these lim-
itations by integrating real-time adaptability into its
core architecture. It is designed to optimize perfor-
mance by leveraging statistical analysis for market
regime detection and a novel set of heuristics for risk
and position management.

The current architecture of the 3T is the result
of a deliberate evolution away from a more conven-
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tional, but ultimately less effective, machine learn-
ing paradigm. Early system development focused
on a regression-based approach using a sophisticated
bootstrap-aggregated ensemble of heterogeneous
learners. This ensemble included a Multi-layer Per-
ceptron (MLP), several gradient-boosted tree mod-
els (LightGBM, CatBoost, XGBoost), a Random
Forest, and a k-Nearest Neighbours classifier [2,4,
5, 8] provided by AutoGluon [18]. This predictive
model was re-trained hourly on all accumulated his-
torical observations of the unbiased continuous eval-
uations with the goal of forecasting the expected
profit and loss of potential portfolio positions. Dur-
ing inference, a trade would only be executed against
live risk if the predictor scored positively.

However, over a period of several months of study,

this predictive approach consistently underperformed.

The core issue identified was that models trained
on historical data are fundamentally retrospective.
Their learned mappings from market features to ex-
pected outcomes become stale in the face of new

market dynamics, creating a performance-costly ”adap-

tation lag” that persists even after incorporating
changes in the next model retrain. The pivotal in-
sight from this empirical investigation was that ran-
domized, out-of-sample feature values were consis-
tently superior to the carefully trained tabular pre-
dictors. This finding supports a central thesis: for
highly unpredictable environments, online stochas-
tic exploration is more effective than classic
supervised learning. Consequently, the machine
learning aspect was removed entirely in favor of the
current paradigm.

The 3T system now operates in a continuous
loop, analyzing market data to first identify pre-
dictable, trending environments and then deploying
capital with a position size dynamically calibrated
to recent system performance. This paper details
the mathematical framework, system architecture,
and unique operational logic of the 3T. The primary
contributions of this method are:

1.1 A Real-Time Optimization Engine

A mechanism that continuously stress-tests a large
number of parameter permutations against live mar-
ket data. This engine is the direct, successful re-
placement for the abandoned machine learning en-
semble. This optimization includes both momentum-

1.2 A Hybrid Risk Management Model

A novel heuristic for position sizing based on recent
performance, coupled with a dynamic, reconciliation-
based approach to position control that replaces static,
per-trade stop-losses.

2 Related Work

The 3T’s architecture is informed by established prac-
tices in quantitative finance but represents a novel
synthesis that prioritizes real-time adaptation. This
section surveys the two competing paradigms—ensemble-
based prediction and stochastic optimization—that
were empirically tested during the system’s develop-
ment.

2.1 Ensemble Methods in Financial
Prediction

Ensemble methods, such as bootstrap aggregating
(bagging) [2] and gradient-boosted trees [4,5,8], have
become standard tools for modeling tabular finan-
cial data. Their ability to reduce variance and cap-
ture complex, non-linear interactions makes them
attractive for tasks like predicting risk-adjusted re-
turns [17]. To combat the non-stationarity of fi-
nancial time series, online learning and incremental
model updating schemes are often employed [14].

Despite their power, these methods share a fun-
damental limitation: they rely on a ”past-to-present”
update rule. A model’s knowledge is exclusively de-
rived from historical data. Consequently, they in-
herit an intrinsic ”adaptation lag,” rendering them
vulnerable to sudden regime shifts where past pat-
terns no longer hold predictive power.

2.2 Stochastic Optimization in Finance

An alternative paradigm is stochastic optimization,
which includes methods such as simulated annealing
[10], evolutionary strategies [6], and random search
[3]. The primary strength of these techniques lies in
their ability to explore a broad search space without
being confined to a deterministic gradient or pat-
terns learned from historical data. In finance, they
are commonly applied to offline tasks, such as port-
folio construction or the hyper-parameter tuning of
other models.

following ("breakout”) [12] and mean-reverting (”swing”)

[15] entry strategies simultaneously, allowing for greater

tactical flexibility.



2.3 The 3T’s Position: Online Stochas-

tic Policy Generation

The 3T system’s core innovation is to take the prin-
ciples of stochastic optimization and apply them not
as an offline tuning process, but as the central, on-
line, real-time decision-making mechanism. The sys-
tem’s Parameter Optimization Engine functions as
a continuous stochastic policy generator. This
approach directly addresses the adaptation lag of
ensemble methods by continuously testing new pa-
rameter sets against live market data, making it a
more suitable paradigm for highly dynamic and un-
predictable markets. The fundamental differences
between these two approaches are summarized in
Table 1.

3 System Architecture

The 3T system is a modular architecture comprising
four main components: a Data Ingestion Module, a
Parameter Optimization Engine, a Trade Evalua-
tion and Execution Engine, and a State Reconcili-
ation Module. This separation of concerns ensures
robustness and scalability.

3.1 Data Ingestion Module

This module serves as the sensory input for the en-
tire system, acquiring market data from two primary
sources:

e Real-time Websocket Stream: Provides
low-latency access to immediate price updates
(tick data), crucial for the Parameter Opti-
mization Engine.

e Historical API Endpoint: Fetches histori-
cal Open/High/Low/Close (OHLC) data, pro-
viding aggregated into one-minute volatility
bars. This provides the necessary historical
context for macro-level analysis like Permuta-
tion Entropy calculation.

3.2 Parameter Optimization Engine

This engine operates as a continuous, massively par-
allel simulation layer that runs concurrently with the
live trading system. Its purpose is to find the most
profitable set of parameters for the core trading al-
gorithm in the current market environment strictly
as a function of out-of-sample performance.
Technically, the engine functions as a stochastic
decision engine. At each decision epoch ¢, it gener-
ates a candidate policy 0; by applying a perturba-

tion vector €;, drawn from a Gaussian distribution
N(0,02I), to a set of base parameters §°*°:

Ot _ ebase + e

This perturbed policy is then evaluated in a virtual
simulation against live market data. The engine em-
ploys an accept-if-profitable hill-climbing rule: if
the simulated profit-and-loss of the candidate policy
is positive, its parameters are adopted for the next
evaluation cycle; otherwise, the policy is discarded,
and a fresh perturbation is drawn. This mechanism
allows the system to rapidly adapt to favorable mar-
ket conditions while continuously exploring the pa-
rameter space.

The key parameters under optimization include:

e Permutation entropy parameters: The em-
bedding dimension d and time lag 7.

e Market state thresholds: The specific value
of Permutation Entropy, Hireng, below which
the market is considered 'trending’.

e Max duration: The maximum time, in sec-
onds, that a single simulation ('run’) is allowed
to process data.

e Max direction reversal: The maximum time
a run will attempt to find a market direction
before exiting.

e APR target: The target Annual Percentage
Rate (APR) that serves as a benchmark for
the fitness function.

¢ Rolling APR minutes: The time window
over which the system’s APR stability is cal-
culated.

e Decision distance seconds: The minimum
interval between successive trade evaluations.

e System type: The entry logic, supporting
"breakout” or ”swing” methodologies.

The most profitable parameter set discovered by this
engine is then propagated to the Trade Evaluation
and Execution Engine for use in the live, risk-on
environment.

4 Mathematical Framework and
Operational Logic
The core of the 3T is a continuous loop executed by

the Trade Evaluation and Execution Engine, which
acts upon the optimal parameters supplied by the



Table 1: Paradigmatic Comparison of Trading System Approaches.

Feature

Tabular Predictor (Ensemble)

Stochastic Engine (3T)

Core Task
on learned patterns.
Data Reliance
historical data.
Adaptation Mechanism
on accumulated data.
Adaptation Latency

Primary Failure Mode

outdated patterns.

Prediction of future Profit & Loss based
Retrospective: Trained exclusively on
Periodic Batch Retraining (e.g., hourly)
High (minutes to hours). The model is
stale between retraining intervals.

Stale mapping during regime shifts,
leading to poor decisions based on

Adaptation of system parameters to
maximize immediate profitability.
Prospective: Tested continuously on live,
real-time data.

Continuous Real-Time Perturbation and
evaluation of parameters.

Near-Zero. Adaptation occurs at the
frequency of the decision epoch.
Inefficient exploration if the perturbation
variance is poorly tuned.

Parameter Optimization Engine. Each iteration per-
forms a rigorous sequence of data analysis and trade
management operations.

4.1 Market Regime Analysis via Per-
mutation Entropy

To prevent trading in stochastic, unpredictable mar-
ket conditions, the system first performs a market
regime analysis. This methodology is chosen for its
robustness to noise and its model-free nature [1].

1. A time series is constructed from the most re-
cent N price points derived from the aggre-
gated volatility bars.

2. Permutation Entropy, H(d), is calculated on
this time series using the optimized parame-
ters (d, 7). The formula for Permutation En-
tropy is given by:

d
H(d) == pilog,p;
i=1

where d is the embedding dimension and p; is
the relative frequency of the i-th permutation
ordinal pattern.

3. If the calculated value H(d) is below the op-
timized threshold Hy,.pq, the market is classi-
fied as trending. The algorithm proceeds to
the next stage. Otherwise, the market is clas-
sified as noisy, and no new trading action is
initiated.

4.2 System Entry Logic: Breakout and

Swing Types

Once a trending market is confirmed, the system
employs its configured entry logic based on the sys-
tem_type parameter.

e Breakout Logic: This is a momentum-following
strategy. A long entry is considered if the cur-
rent price exceeds the highest high of the last
N periods, and a short entry is considered if
the price falls below the lowest low of the last
N periods.

e Swing Logic: This is a mean-reversion strat-
egy. It identifies short-term price extensions
away from a central tendency (e.g., a moving
average) and seeks to enter at a more favorable
price point.

4.3 Position Sizing Heuristic and APR
Trend Analysis

When a valid entry signal is generated, the sys-
tem determines whether to increase its risk exposure
based on its recent profitability trend, as measured
by its Annual Percentage Rate (APR).

4.3.1 APR Gating Condition

A core rule of the risk management framework is
that position size will only be increased if the sys-
tem’s rolling APR is trending positively and is above
the APR target. This ensures that risk is escalated
only during periods of sustained, proven profitabil-

1ty.

4.3.2 Performance-Based Sizing Heuristic

If the APR gating condition is met, the system cal-
culates the appropriate position size. It deliberately
eschews a direct implementation of the Kelly Crite-
rion [9,16], which can be sensitive to estimation er-
rors. Instead, it employs a novel performance-based
heuristic that modulates a base risk position size
(Sbase) based on the relative performance of current



versus historical simulations. The performance fac-
tor, Pielly, is defined as a relative change between
the Kelly percentages of current runs and historical
runs:

0, Hypist =0

chr - Hhist . (1)
—————— otherwise
‘Hhist ‘

By =

where H,,, is the Kelly percentage from current
runs and Hy;s; 1S from historical runs. The factor
Preny is then clipped to a symmetric bound [—7, 7]
(default 7 = 0.5) and floored at —0.98. The final
position size is:

Sﬁnal = Sbase (1 + Clip(Pkellya -7, T)) (2>

Derivation & Edge-Case Handling Table 2 sum-

marises how edge cases observed in production are
handled.

Algorithmic Pseudocode Algorithm 1 presents
the high-level steps for position sizing.

Algorithm 1 Kelly-adjusted position sizing

Heyr < _calculate kelly metrics(...,
‘‘height IS NULL’?)
Huist < _calculate kelly metrics(...,

‘‘height IS NOT NULL’’)
if H.,; is None or Hy;s is None then
Sﬁnal — Sbase
else
P chr - Hhist
|Hhist|
P« clip(P, —7, 7)
Sﬁnal — Sbase X (1 + P)
end if
return Sgnal

4.3.3 Execution and Risk Management

1. Take-Profit: A take-profit goal is set at a
pre-configured percentage gain from the port-
folio value at the start of the current null block
height.

2. Risk Management: The 3T explicitly omits
traditional, per-trade stop-loss orders, which
are susceptible to transient volatility. Instead,
risk is managed holistically through State Rec-
onciliation.

5 State Reconciliation Module

The State Reconciliation Module functions as a dy-
namic, portfolio-level risk manager. Its operation
is scheduled at a configured interval (e.g., every 10
minutes) rather than being event-driven by price ac-
tion. This prevents high-frequency, reactive adjust-
ments and allows positions time to mature.

A key aspect of this module is its symbiotic rela-
tionship with the Parameter Optimization Engine.
The engine’s continuous simulations provide an in-
telligent, real-time benchmark of expected perfor-
mance for thousands of alternative parameter con-
figurations. During each reconciliation cycle, the
module assesses the aggregate health of all open po-
sitions not against a static rule, but against this
dynamic benchmark. If the actual portfolio per-
formance deviates significantly from the simulated
expectancy of the top-performing virtual configura-
tions, or if the market regime has shifted to noisy’,
the module takes corrective action. This action is
based on the simulated success of the best alter-
native parameter set and may involve reducing or
closing a position entirely.

This process serves as an intelligent, system-wide
stop-loss mechanism. A position is not closed simply
because it is losing money, but because the system
has discovered, via simulation, that better parame-
ter configurations exist for the current market condi-
tions. To prevent excessive trading fees from minor
adjustments (”churn”), the module will only execute
a change if the required adjustment in position size is
above a minimum financial or percentage threshold.
Furthermore, to ensure the reliability of risk-on deci-
sions, multiple observer nodes are utilized to achieve
consensus, preventing a runaway process from con-
tinuously adjusting a position without checks and
balances [11].

6 Configuration Parameters

The reconciliation engine is driven by a small set of
runtime configuration keys. Table 3 lists the keys,
their defaults, and a brief description.

7 Conclusion

The Tactical Trend Trader (3T) provides a robust
and complete framework for adaptive algorithmic
trading. Its novelty and efficacy stem from a de-
liberate architectural choice to favor real-time, ex-
ploratory adaptation over retrospective prediction.



Table 2: Edge-case handling for the Kelly-based performance factor.

Edge case Handling in code

Paper description

Hpist = 0 (no historical data)

Insufficient sample size < 10 runs

Clip to +7
Floor at —0.98

| Peelty| > T
Pretiy < —1.0

Return base size unchanged

Return None — fallback

“If no historical Kelly can be computed, the
engine falls back to the unadjusted base size.”
“Kelly is only calculated when at least ten
qualifying runs exist; otherwise the metric is
unavailable.”

“A hard cap prevents runaway position scaling.’
“The floor avoids a sign reversal that would
otherwise flip the position direction while
maintaining a small amount of pass through
sampling.”

)

Table 3: Key configuration parameters used by the reconciliation engine during testing.

Config key Default

Meaning

kelly_threshold 0.5
risk_pos_percentage 0.0016180339887
minimum_trade_threshold 20.0 (USD)
position_staleness_timeout 300s

Symmetric cap for the performance factor Pyeily.-

Fraction of account equity used as the base risk size.
Minimum notional size before a trade is emitted.

Max age of a local position record before it is considered stale.

This design was the direct result of empirical stud-
ies where a sophisticated, bootstrap-aggregated ma-

ing entropy thresholds to optimize periods of flat /highly

oscillatory conditions. Correlation study between

chine learning ensemble failed to outperform the stochas- market oscillation and system maximum adverse ex-

tic approach in simulated, non-stationary market
conditions.

The system’s strength lies in the synergistic com-
bination of its core components: (1) the use of Per-
mutation Entropy for robust market regime filter-
ing, (2) a massively parallel, real-time Parameter
Optimization Engine that ensures the system re-
mains adapted to current market dynamics, (3) a
unique performance-based heuristic for dynamic po-
sition sizing, and (4) an active reconciliation module
that provides intelligent, portfolio-level risk man-
agement. By systematically filtering for predictable
market environments and embracing continuous op-
timization at inference time, the 3T system is de-
signed to navigate complex financial markets, ad-
dressing the critical ”adaptation lag” that limits the
performance of models reliant on historical data.

8 Future Work

The earlier implementation of machine learning mod-
els did show effectiveness on shorter time frames.
Some next steps include investigating hybrid ap-

proaches that combine the strengths of both paradigms;

a lightweight predictive model could be used in com-
bination with the stochastic engine so they are com-
plementrary inputs to the portfolio. Additionally,
there is interest in Hurst processes for complement-

cursions per profit and loss block.
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